Pisa, 26 Gennaio 2007

Guida all'uso dell'Eurocodice 2 nella progettazione strutturale

- materiali
- analisi strutturale
- stati limite ultimi

Prof. ing. Piero Marro Dr. ing. Matteo Guiglia Dr. ing. Maurizio Taliano

Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino

Materiali (Sez. 3-EC2)

Calcestruzzo

f_{ck} = resistenza cilindrica a compressione caratteristica a 28 giorni.

ENV: da 12 a 50 N/mm²

EN: da 12 a 90 N/mm² (14 classi)

Caratteristiche meccaniche e fisiche correlate a f_{ck}

(Prospetto 3.1-EC2)

	Classi di resistenza dei calcestruzzi										Relazione analitica / Spiegazione					
1	f _{ck} (MPa)	12	16	20	25	30	35	40	45	50	55	60	70	80	90	
2	f _{ck,cube} (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105	
3	f _{cm} (MPa)	20	24	28	33	38	43	48	53	58	63	68	78	88	98	$f_{cm} = f_{ck} + 8(MPa)$
4	f _{ctm} (MPa)	1,6	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1	4,2	4,4	4,6	4,8	5,0	$f_{\text{ctm}} = 0.30 \times f_{\text{ck}}^{(2/3)} \le C50/60$ $f_{\text{ctm}} = 2.12 \cdot \ln(1 + (f_{\text{cm}}/10))$ > C50/60
5	f _{ctk, 0,05} (MPa)	1,1	1,3	1,5	1,8	2,0	2,2	2,5	2,7	2,9	3,0	3,1	3,2	3,4	3,5	$f_{\text{ctk};0.05} = 0.7 \times f_{\text{ctm}}$ frattile 5%
6	f _{ctk,0,95} (MPa)	2,0	2,5	2,9	3,3	3,8	4,2	4,6	4,9	5,3	5,5	5,7	6,0	6,3	6,6	$f_{\text{cts,0,95}} = 1.3 \times f_{\text{ctm}}$ frattile 95%
7	E _{cm} (GPa)	27	29	30	31	32	34	35	36	37	38	39	41	42	44	E _{cm} = 22[(f _{cm})/10] ^{0,3} (f _{cm} in MPa)
8	€ _{c1} (‰)	-1,8	-1,9	-2,0	-2,1	-2,2	-2,25	-2,3	-2,4	-2,45	-2,5	-2,6	-2,7	-2,8	-2,8	vedere Figura 3.2 $\varepsilon_{\rm c1}(^{0}/_{00}) = -0.7f_{\rm cm}^{-0.31}$
9	€ _{cu1} (‰)	-3,5								-3,2	-3,0	-2,8	-2,8	-2,8	vedere Figura 3.2 per $f_{ck} \ge 50$ Mpa $\mathcal{E}_{cu1}(^{0}/_{co}) = -2,8-27[(98-f_{cm})/100]^{4}$	
10	Ec2 (‰)	-2,0							-2,2	-2,3	-2,4	-2, 5	-2,6	vedere Figura 3.3 per $f_{ck} \ge 50$ Mpa $\mathcal{E}_{c2}(^{0}/_{00}) = -2,0-0,085 (f_{ck}-50)^{0.53}$		
11	€ _{cu2} (‰)	-3,5								-3,1	-2,9	-2,7	-2,6	-2,6	see Figure 3.3 per $f_{ck} \ge 50$ Mpa $\varepsilon_{ck2}(^{\circ}/_{co})$ =-2,6-35[(90- f_{ck})/100] ⁴	
12	n	2,0							1,75	1,6	1,45	1,4	1,4	per f _{ck} ≥ 50 Mpa n=1,4+23,4[(90- f _{ck})/100] ⁴		
13	ε _{c3} (‰)	-1,75							-1,8	-1,9	-2,0	-2,2	-2,3	vedere figura 3.4 per $f_{ck} \ge 50$ Mpa $\varepsilon_{c3}(^{\circ})_{(o)} = -1,75-0,55[(f_{ck}-50)/40]$		
14	ε _{cu3} (‰)	-3,5							-3,1	-2,9	-2,7	-2,6	-2,6	vedere figura 3.4 per $f_{ck} \ge 50$ Mpa $\varepsilon_{co0}(^{0}/_{co})$ =-2,6-35[(90- f_{ck})/100] ⁴		

f _{ck}	12 ←→ 90 N/mm ²	90/12 = 7,5
f _{ctm}	1,6 ←→ 5,0 N/mm ²	5,0/1,6 = 3,1
E _{cm}	27 ←→ 44 kN/mm²	44/27 = 1,6

Calcestruzzo ad alta resistenza

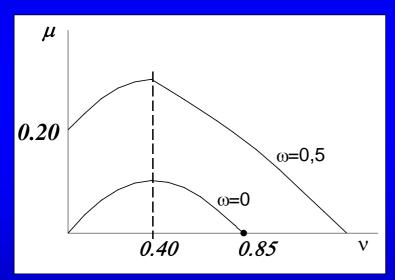
- elementi compressi
- travi precompresse
- meno conveniente per travi non precompresse in quanto:
 - sfruttamento della resistenza solo in zona compressa
 - elevate percentuali di armatura, difficoltà di collocazione
 - limiti inflessione

Resistenza a compressione di progetto f_{cd}

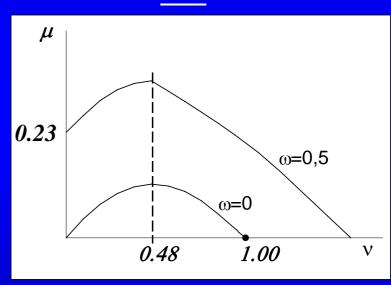
ENV:

$$f_{cd} = \frac{f_{ck}}{\gamma_C}$$

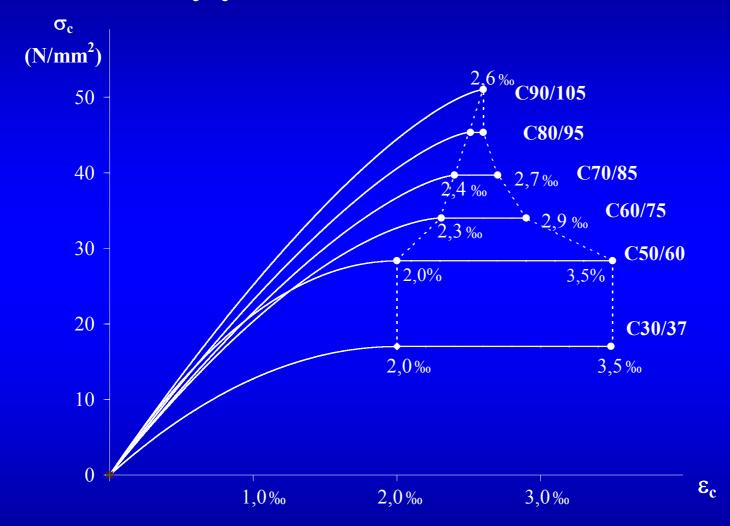
$$con M_{Rd}, N_{Rd} \rightarrow f_{cd} \cdot 0.85$$


EN:

$$f_{cd} = \frac{f_{ck}}{\gamma_C} \cdot \alpha_{cc}$$
 $(\alpha_{cc} = 0.85)$


Conseguenza della definizione di $f_{cd} = \frac{f_{ck}}{\gamma_C} \cdot \alpha_{cc}$

- nuove tabelle e nuovi diagrammi dei manuali f_{ck} ≤ 50 N/mm² alterati da 1 / 0,85


EN

Nuove tabelle e diagrammi per f_{ck} > 50 N/mm²

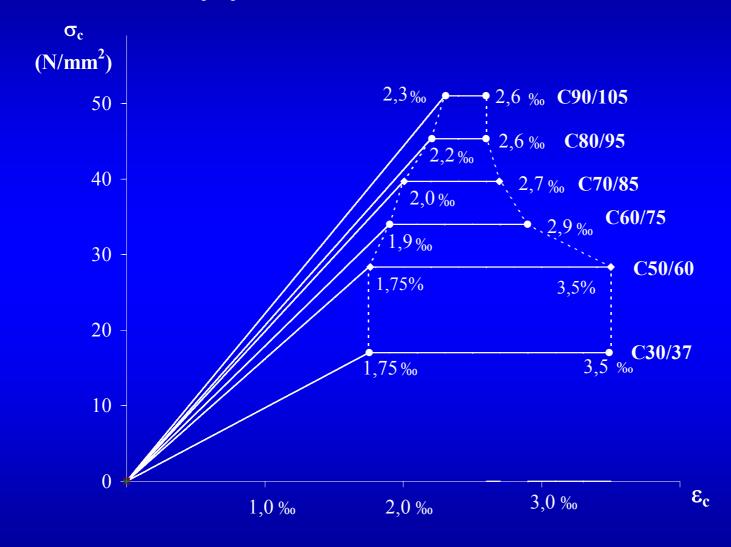
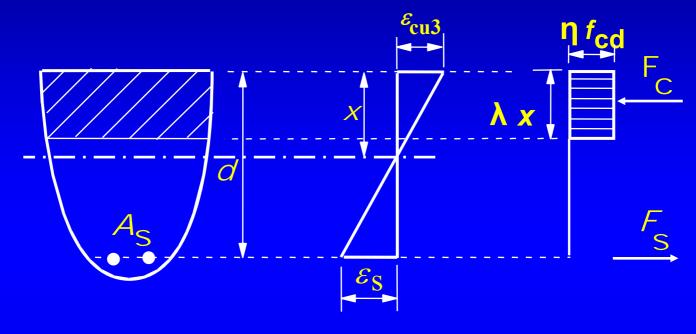
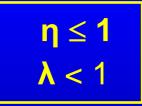
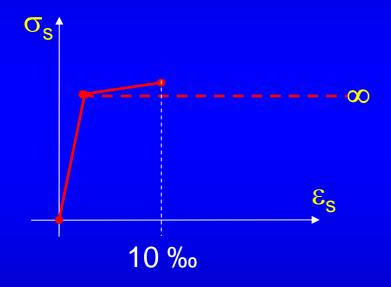


Diagramma σ_c - ε_c di progetto: parabola (esponenziale) - rettangolo

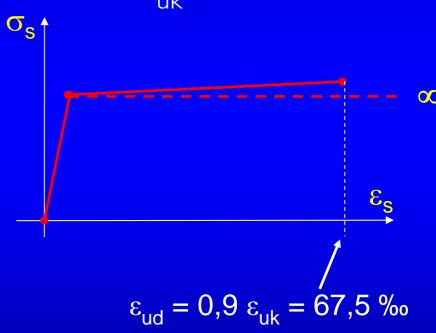



Diagramma σ_c - ε_c di progetto: bilineare

Distribuzione rettangolare delle tensioni



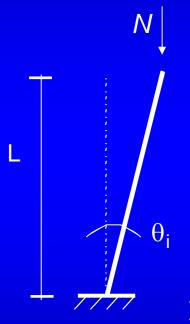
Acciaio per cemento armato ordinario


ENV:

alta duttilità $\varepsilon_{uk} \geq 50 \%$

EN:

B450C
$$\epsilon_{uk} \ge 75 \%$$



Analisi strutturale (Sez. 5-EC2, da 5.1 a 5.7)

Imperfezioni geometriche

Valori riferiti alla Classe 1 (esecuzione normale) di ENV 13670 "Execution"

Inclinazione:

$$\theta_i = \theta_o \cdot \alpha_h \cdot \alpha_m$$

$$\theta_o = 1/200$$

$$\alpha_h = \frac{2}{\sqrt{L}} \qquad 0.66 \le \alpha_h \le 1$$

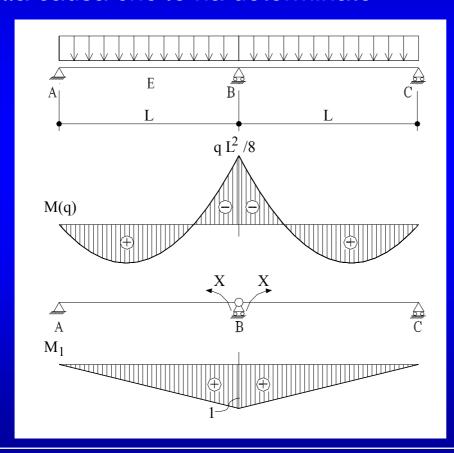
$$\alpha_m = \sqrt{0.5 \cdot (1 + \frac{1}{m})}$$
 (es. m = 5 $\Rightarrow \alpha_m = 0.77$)

- \triangleright θ_i per S.L.U.
- > in particolare con effetti del secondo ordine

Analisi strutturale

Nell'evoluzione della risposta della struttura alle azioni compaiono:

- fessure
- plasticizzazione dell'acciaio
- plasticizzazione del calcestruzzo


deformazioni rotazionali anelastiche

Nelle strutture isostatiche → aumento inflessione Nelle strutture iperstatiche

- → reazioni vincolari, sollecitazioni M,V (risposta non lineare)
- → deformazioni elastiche complementari (compatibilità)

- Le rotazioni anelastiche prendono il posto di deformazioni elastiche: localmente M diminuisce
- L'effetto locale di rotazioni anelastiche ha segno opposto a quello della causa che le ha determinate

Trave continua.

Fessurazione all'appoggio centrale

In EC2 quattro metodi prendono in conto questi fenomeni in modo diverso

- Analisi lineare elastica (ALE)
- Analisi lineare elastica con ridistribuzione limitata (LR)
- Analisi plastica (P)
- Analisi non lineare (ANL)

ALE (analisi lineare elastica)

Vale per S.L.E. e S.L.U.

In presenza di carichi

- elasticità, sezioni interamente reagenti fino a S.L.U.
- vantaggio: principio sovrapposizione effetti
- sarebbe necessaria una limitazione di x/d (che EC2 non impone);
 altrimenti → incertezza di modello, rischio rottura fragile

Come:

ENV

DIN 1045:2001

$$x/d = 0,45$$
 ($f_{ck} \le 35 \text{ N/mm}^2$) $x/d = 0,45$ ($f_{ck} \le 50 \text{ N/mm}^2$) $x/d = 0,35$ ($35 < f_{ck} \le 50 \text{ N/mm}^2$) $x/d = 0,35$ ($50 < f_{ck} \le 100 \text{ N/mm}^2$)

In presenza di deformazioni impresse (effetti termici, cedimenti vincolari):

- analisi S.L.U. con sezioni fessurate e senza tension-stiffening
- analisi S.L.E. con graduale evoluzione della fessurazione

LR (analisi lineare elastica con ridistribuzione limitata)

Metodo progettuale per S.L.U.

Dove compare una cerniera plastica, M viene ridotto rinviando la sollecitazione verso altre parti :

- → si può di ridurre localmente l'armatura tesa, A_s, in funzione della ridistribuzione δ
- → i valori di ridistribuzione of (max 30%) dipendono da:
 - classe dell'acciaio (in Italia, classe C)
 - f_{ck} e ε_{cu}
 - x/d
- \rightarrow se la ridistribuzione δ è troppo spinta, anche se ammissibile per lo S.L.U., σ_c e σ_s possono risultare eccessive allo S.L.E.

P (analisi plastica)

Applicazione della teoria della plasticità. Vale solo per S.L.U.

- Metodo Statico (lower bound method):
 - struttura resa isostatica
 - rispetto delle condizioni di equilibrio e di plasticità
 - Q_{u,vero} ≥ Q_{lim} (calcolato)
- Metodo Cinematico (upper bound method)
 - struttura trasformata in un meccanismo
 - posizione arbitraria delle cerniere con possibilità di affinamento
 - Q_{u,vero} ≤ Q_{lim} (calcolato)

P (analisi plastica)

In EC2:

- Applicazioni del metodo statico
 - schema puntoni-tiranti
 - metodo strisce per le piastre
 - metodo θ variabile per le travi
- Applicazioni del metodo cinematico
 - travi e piastre (linee di rottura)
 - richiesti: acciai di classe B o C
 - duttilità diffusa senza verifica capacità rotazione se

$$x/d \le 0.25 \text{ per } f_{ck} \le 50 \text{ N/mm}^2$$

$$x/d \le 0,15 \text{ per } f_{ck} > 50 \text{ N/mm}^2$$

altrimenti si richiede la verifica di θ_{pl}

ANL (analisi non lineare)

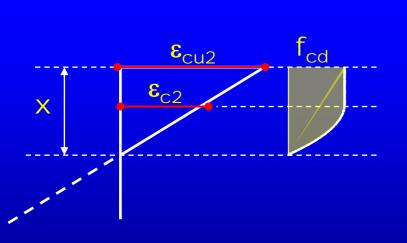
- Tiene conto di tutti i fenomeni
- Costituisce un procedimento evolutivo al passo
- Rispetta le condizioni di equilibrio e di compatibilità
- Richiede modellazione σ - ϵ acciaio e calcestruzzo, nonché valori θ_{pl}
- Richiede l'uso di elaboratore

EC2 non fornisce regole specifiche

Confronto fra i metodi di analisi

- ➤ Travi duttili, progetto base ALE senza ridondanze di A_s:

 portanza ANL = portanza ALE
- Travi duttili, progetto base ALE con ridondanze di A_s:
 portanza ANL > portanza ALE
- Travi duttili progettate con LR:
 ANL conferma SLU, ma evidenzia eventuali insufficienze a SLE
- Portanza Pcinematico > Portanza ANL



S.L.U. per flessione semplice e composta (Sez. 6.1-EC2)

- 1 pagina EC2 → 30 pagine Guida
- metodi noti, novità su materiali:

- acciaio $\epsilon_{ud} \rightarrow 67,5 \%$

- S.L.U.: σ_c (ϵ_c) funzione esponenziale:

$$f_{cd} = \left| 1 - \left(1 - \frac{\varepsilon_c}{\varepsilon_{c2}} \right)^n \right|$$

f _{ck} (N/mm²)	n
≤50	2,0
60	1,6
70	1,45
80	1,4
90	1,4

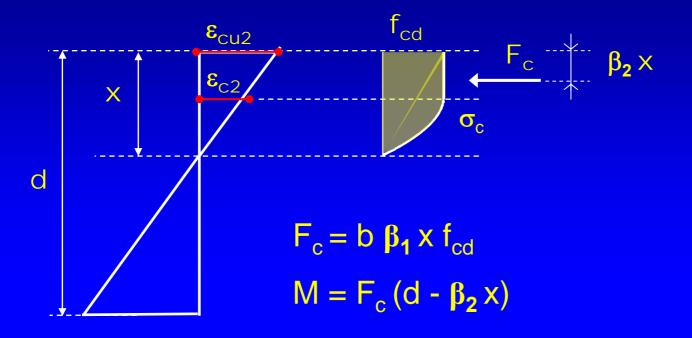
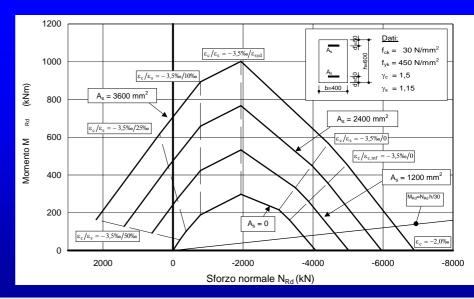


Tabelle di β_1 β_2 per ogni f_{ck} , anche per x > h

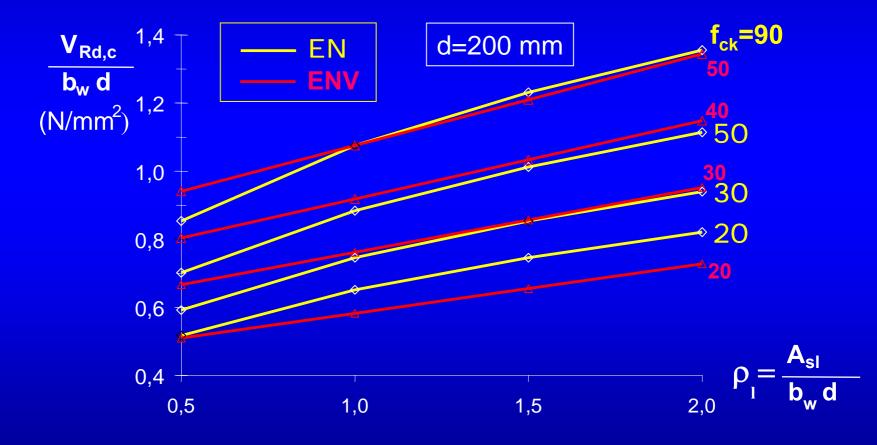

Problemi svolti:

- Dati: geometria, meccanica della sezione e retta deformazione, determinare N_{Rd} e M_{Rd}
- Dati: geometria, meccanica della sezione e N_{Ed}, determinare M_{Rd}
- Dati: geometria, N_{Ed} e M_{Ed}, determinare A_s e A'_s

Applicazioni a sezioni rettangolari e a T

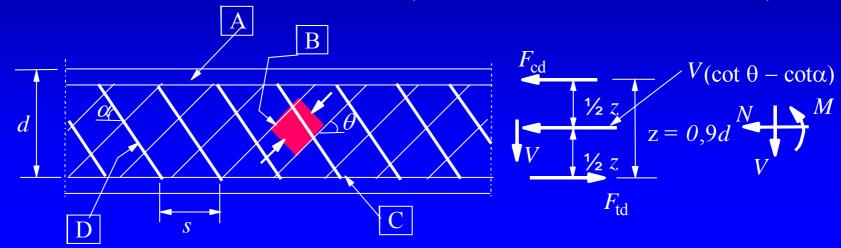
Trattazione in termini dimensionali non trattandosi di un manuale

Esempio: diagramma di interazione N_{Rd} – M_{Rd}



S.L.U. per taglio (Sez. 6.2-EC2)

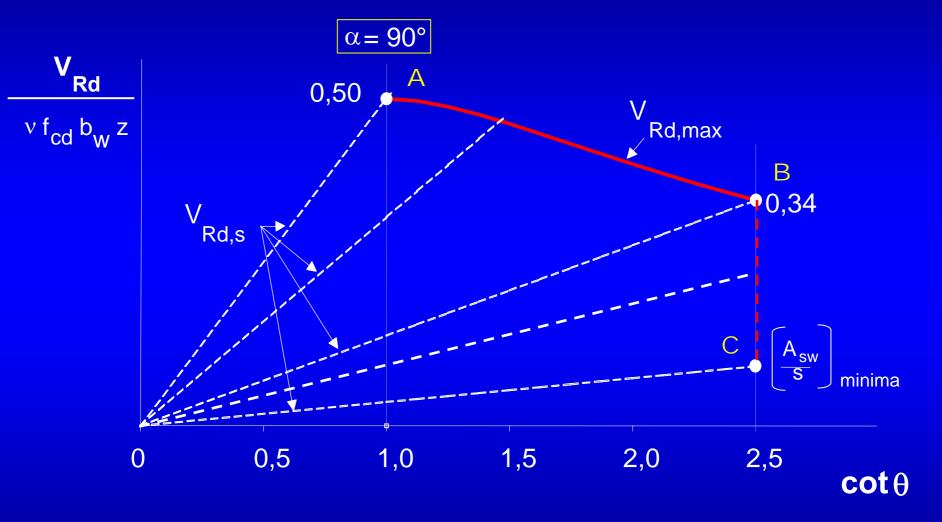
Elementi privi di armature trasversali


Sono le nervature dei solai e le piastre. Non le travi perché queste devono avere almeno l'armatura minima (Sez. 9-EC2).

Travi con armature trasversali

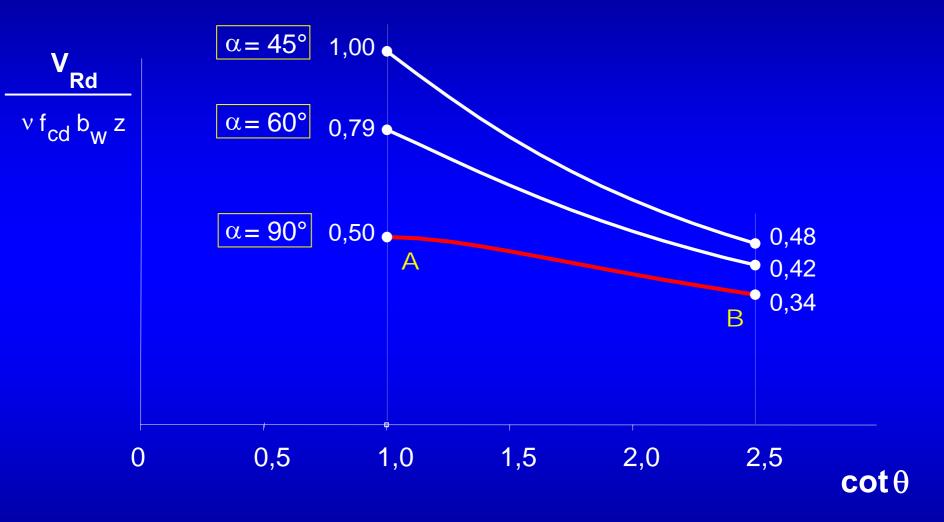
Un solo metodo di verifica: θ variabile (in ENV anche metodo "standard").

Campo di θ più ristretto rispetto a ENV :

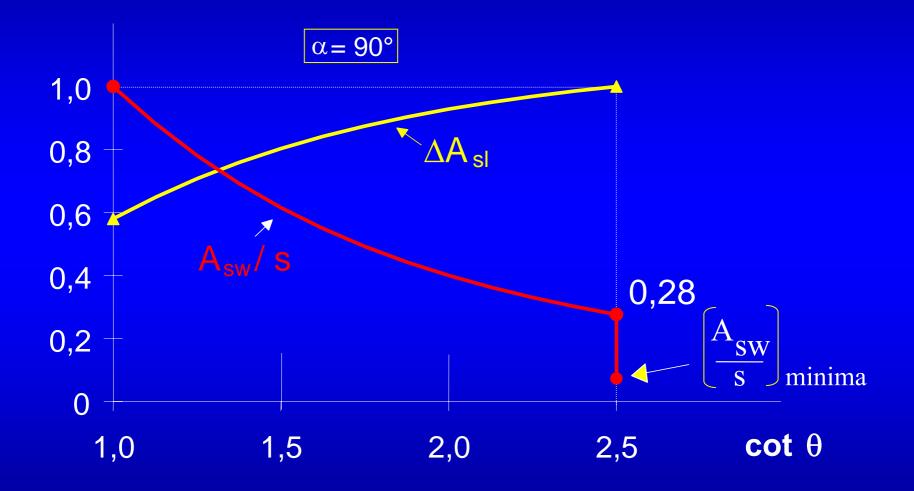

$$1 \le \cot \theta \le 2.5$$
 (anziché $0.4 - 2.5$)
($45^{\circ} \le \theta \le 21.8^{\circ}$ anziché $68.2^{\circ} - 21.8^{\circ}$)

Formule derivanti dall'applicazione del metodo statico della plasticità. Pur essendo un metodo *lower bound*, è necessario adottare $\sigma_c = v f_{cd}$ (con v < 1, funzione di f_{ck})

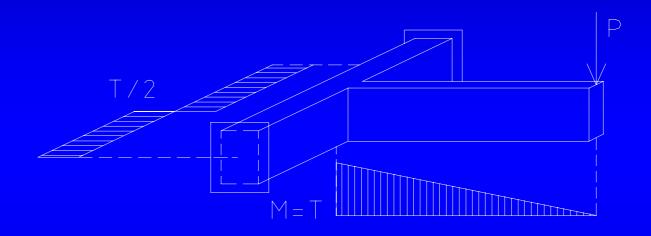
Effetto del taglio: correnti superiore e inferiore tesi, anima compressa, in funzione di α e di θ

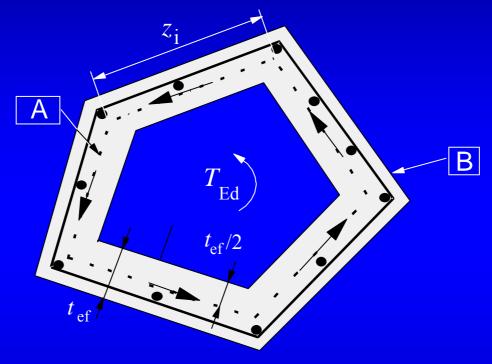


Taglio resistente delle bielle compresse e delle armature



Taglio resistente delle bielle compresse


Armature necessarie


S.L.U. per torsione (Sez. 6.3-EC2)

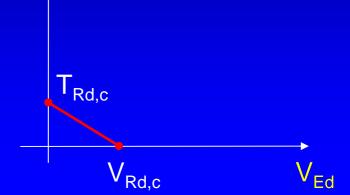
- torsione di compatibilità → armature minime (Sez.9-EC2)
- torsione di equilibrio → verifica statica

Per torsione di equilibrio: sezione resistente tubolare ideale con flusso di τ calcolato alla Bredt

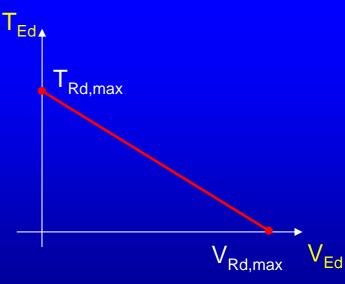
- A linea media
- B perimetro esterno della sezione effettiva

Ogni tratto z_i della sezione tubolare si comporta come una sezione rettangolare soggetta a taglio. Risultano:

- \triangleright bielle compresse di inclinazione θ variabile:
 - inclinazione θ come per il taglio
 - $-\sigma_c \le v f_{cd} con v < 1 come per il taglio$
- \triangleright armature trasversali tese: staffe $\alpha = 90^{\circ}$


> armature longitudinali tese (analogia correnti trave a taglio)

Combinazioni taglio-torsione


❖ sollecitazioni limitate (assenza fessure)

 \Rightarrow diagramma di interazione lineare fra $V_{Rd,c}$ e $T_{Rd,c}$, sollecitazioni resistenti per sezioni non armate. Si dispone solo l'armatura minima.

sollecitazioni importanti

 \Rightarrow diagramma di interazione lineare fra $V_{Rd,max}$ e $T_{Rd,max}$, sollecitazioni resistenti corrispondenti alla resistenza delle bielle compresse. Si dispone l'armatura necessaria.

