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1. Introduction

1.1. Purpose and organization of study

Expansion joints and supports installed in conventional bridges can cause maintenance
problems and integral construction is one of the most efficient solutions. However many
countries have imposed restrictive limits on the length of these structures, trying to reduce
stresses caused by thermal variations. This document aims to identify the maximum length
of integral bridges, in relation to the particular boundary conditions considered in the case
study.

First, the theme of integral bridges is introduced, presenting advantages and disadvantages
of this type of construction, the different types of abutments, and aspects to be analysed
with particular attention. Then, the reinforced and prestressed concrete integral bridge
under study is described. The following chapters include the load analysis, the principles
adopted in numerical modelling, and the design of structural elements, the latter carried out
paying attention to guarantee the necessary flexibility to the structure. Finally, the
conclusions of the work and a detailed study on the transition zone behind bridge
abutments are presented.

For numerical modelling and structural analysis MIDAS Civil 2017 (v1.1) has been used.
1.2. Integral bridges

Traditionally, between superstructure and abutments of conventional bridges, expansion
joints and supports are installed to facilitate relative displacements and prevent the
occurrence of stresses caused by thermal variations. However such components can cause
maintenance problems.

It has been observed (1) that deicing salts (normally used for roads maintenance in winter
season) are the most important source of damage: they penetrate through the joints of the
bridge deck and reach the substructures. This process causes corrosion of joints and
supports located on abutments and between adjacent spans, becoming essential in defining
costs of maintenance in conventional road bridges.

Therefore, considering problems associated with expansion joints and supports in
traditional bridges, the idea of physically connecting superstructure and substructure to
create what is commonly called integral bridge is becoming increasingly popular. This
concept avoids all the problems associated with connecting and supporting devices because
it considers a structure with one or more spans without expansion joints or supports: piers,
deck and abutments are connected monolithically to create a complex structural and
geotechnical interaction.

However, due to the connection between superstructure and substructure, abutments are
forced to move away from the embankment when the temperature decreases and the deck
contracts (i.e. in winter), and to move towards the embankment when the temperature
increases and the deck expands (i.e. in summer). Consequently, the backfill soil behind




4. Materials

The following tables show the characteristics of the materials used:

Girders:
Concrete - C50/60

Characteristic value of cylindrical resistance fox 50 N/mm?
Characteristic value of cubic resistance R 60 N/mm?
Design value of tensile resistance feim 4.1 N/mm?
Characteristic value of tensile resistance feucson) 29 N/mm?
Partial factor for materials and actions Ye 2 .

o 085 .
Design value of compression resistance ULS foa 28.3 N/mm?
Design value of tensile resistance ULS e 1.9 N/mm>
Poisson's ratio v 0.2 -
Modulus of elasticity E. 37278 N/mm’
Exposure class Girders: XC4+XD1
Minimum concrete cover 25 mm
Abutments, Piers, Foundations, Structural slab:

Concrete - C32/40

Characteristic value of cylindrical resistance fue 32 N/mm?
Characteristic value of cubic resistance Rk 40 N/mm?
Design value of tensile resistance feim 3.0 N/mm’
Characteristic value of tensile resistance fet(sos) 2.1 N/mm?
Partial factor for materials and actions e 1 .

o 085 .
Design value of compression resistance ULS fea 181 N/mm?
Design value of tensile resistance ULS foa 1.4 N/mm’
Poisson's ratio v 0.2 -
Modulus of elasticity E 33346 N/mm’

Exposure class

Minimum concrete cover

Piers and abutments: XC4+XDl1
Foundations: XC2
Structural slab: XC3+XDl1
Abutments: 50 mm
Piers: 30 mm
Pile caps: 50 mm
Piles: 70 mm
Structural slab: 30 mm
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Passive reinforcement:

Steel - B450C

Characteristic yielding strength foo > 450 N/mm’
Characteristic ultimate strength fic 540 N/mm?>
Modulus of elasticity E 210000  N/mm>
Partial factor for materials Ys L5 -
Design strength ULS fya 3913 N/mm’
Poisson's ratio v 0.3 -
Active reinforcement:
Strand

One strand area 139 mm’
Characteristic strength jis 1860 N/mm’
Characteristic strength (1% deformation) ok 1670 N/mm’
Design strength ULS foya 14522 N/mm’
Modulus of elasticity E 201000 N/mm>
Partial factor for materials Ys .15 -
DYWIDAG plain bars:

Plain bar 32WS
Characteristic strength fouc 1000 N/mm?
Characteristic strength (1% deformation) foiyk 800  N/mm’
Design strength ULS foya 695.7  N/mm’
Modulus of elasticity E 205000 N/mm’
Partial factor for materials Ys .15 -
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5. Load analysis

5.1. Permanent actions
5.1.1. Structural permanent loads

The calculated structural permanent loads are as follows:

1 Precast girder (L = 30 m ,y = 25 kN /m?3) 22 kN/m
In situ concrete slab + Predalles (t = 0.27 m ,y = 25 kN /m?) 6.8 kN /m?
- 1200 .
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Figure 34 - Bridge deck: cross section at midspan.

5.1.2. Non-structural permanent loads

The calculated non-structural permanent loads are as follows:

Road pavement (y = 24 kN /m?3) 3 kN/m?
Kerb (18 cm X 75 cm, y = 25 kN /m3) 3.4 kN/m
(each)
Lateral vertical panel (10 cm x 100 cm, y = 25 kN/m®) 2.5 kN/m
(each)
Traffic barriers 1.5 kN/m
(each)
Drainage pipe 0.6 kN/m
(each)
33

6. Modelling

In integral bridges the analysis of soil-structure interaction is essential because of the earth
pressures which develop following the thermal expansion and contraction of the deck.
Therefore it is important to properly model the soil and its ability to react to certain stress
states.

In structure modelling, the possible presence of compressible inclusions and geogrids
behind abutments is not considered as their benefit is not quantifiable.

In the following paragraphs the soil-structure interaction is first examined, and then
implementation and validation of the numerical model are illustrated.

6.1. Soil-structure interaction
6.1.1. Method of analysis

In the design of integral bridges the soil-structure interaction due to temperature changes
needs to be dealt with carefully.

The British Standards (13) presents two different methods of analysis:
a) Limit equilibrium method
b) Soil-structure interaction method

The limit equilibrium method does not depend on soil characteristics and is applicable to
abutments where:

o the characteristic thermal movement of the end of the deck does not exceed 40 mm;
e the skew does not exceed 30°;

o the depth of soil affected by the abutment movement can be identified without
recourse to a soil-structure interaction analysis.

Instead it is not appropriate for:
e abutments founded on a single row of piles;
e embedded wall abutments;
e over-consolidated backfill material;
e cohesive soils;
e layered soils.

This type of analysis provides formulas to calculate the design value of the earth pressure
coefficient for expansion K*; depending on the abutment’s geometry, and suggests the
force distribution with which the designer can simulate the earth pressure acting behind
abutments.
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Soil Spring Type
(@) Abutment Spring
() Pile Spring
Geometry Data
—IE‘ReFerence Figure —— Abutment Height
H "
Deck
it il Abutment Width 0 o
o Girder -
] [reck; Deck Length (L) 0 m
Ay o
i ek Soil Parameter
&"S:‘ &:?"ﬁ Void Ratio (g) 0
Spedific Gravity (Gs) 265
Cyde factor 2
Thermal Expansion
Differential [
Elements of Abutment Deck Temp.
e R
EREckE) Strip Footing Spring Data
Element List Found. Width (W) 0 m
Found. Bearing
Select Modes for Footings Pressure (p') 0 klfm~2
Node List Rot. Spring Dir.

Figure 60 - Parameters to be entered for Abutment Springs (MIDAS Civil).

Strip footing spring data (highlighted in the figure) have to be neglected in case of pile
foundations.

Numerical values used for design are presented in paragraph “Description of the model”.

Pile springs

The soil-structure interaction between piles and foundation soil is modelled using lateral
springs and vertical springs.

For vertical linear elastic springs, the stiffness is calculated using the following expression
(for sand, soft clay and stiff clay):

Kypere = (KD - 1) / Ky

where:
Kyert stiffness of the vertical spring;
Ky coefficient of subgrade reaction of foundation soil;
D pile diameter;
i spring’s competency length;
Ko coefficient of earth pressure at rest of foundation soil.
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Figure 65 — Variation of modulus of elasticity with time: time dependent material properties for C50/60.

6.2.2. Sections and general modelling
For sections of structural elements refer to paragraph “Description of the bridge”.

Girders, slab, piers and foundation piles are modelled using beam elements, while
abutments are represented by shell elements.

Figure 66 - Extruded view of a part of the model.
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In conclusion, a scale factor equal to 20 is applied to the torsional stiffness of girders TRAFFIC LANE N.1
(composed section), in order to obtain the same transverse deformation in grid and solid F 300 {
model: 300
; 0.4 m 300
=04m
xx,manual 150
~ 4
Lexmipas = 0.02m
Ixx,manual/lxx,MIDAS =20
where:
. . . . L 1050
Liexmanuat torsional stiffness of composed section (precast girder and 1200
Ll (
collaborating structural slab) calculated with geometric L8 e=-0.18m
formulas;
Figure 91 — Traffic line lanes: eccentricity.
Lx MiDAS torsional stiffness of composed section (precast girder and heel S, p b e wheels of fhe vehicl
' . . Wheel Spacin istance between the wheels of the vehicle;
collaborating structural slab) calculated by MIDAS Civil. pacing ’
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% 52 ——— bres  asy  Asz Iyl weght W .
. YW IE = [E S S £ S E EO EO| selected, MIDAS applies the traffic load to the cross beams (the
%5 528 1 1 1 x |1 .. . .
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530 Add /Replace X . i
fg:; ERERCEEE O, T element; vehicle loads are distributed to girders by cross beam
B EIO BEIEREE, T SCTEEn elements defined as Cross Beam Group).
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Figure 84 — Scale factor applied to the torsional stiffness of the composed section. 1
o ind - b i
P . =L [ i
Reference element }’—a"l*“b'_"l
Figure 92 — Vehicular load distribution: difference between Lane Element and Cross Beam (MIDAS Civil
manual).
Skew skew angles at the start and end of the bridge;
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Moving Direction

MIDAS considers both directions (forward and backward):

Forward Backward
 Lane direction —  Lane direction —

Figure 93 — Moving direction (MIDAS Civil manual).

Therefore, load of vehicles can be defined as follows:

Standard Name
EM 1991-2: 2003 - RoadBridgeFootway and FootBridge

Load Type
(®) Load Model 1/ Fatigue Load Model 1
(O Load Model 2,4 { Fatigue Load Model 2,4
(O Load Model 3
(O Load Model 3 (Stradding)
(O Fatigue Load Model 3
() Permit Truck
Vehicular Load Properties
Vehicular Load Mame : | Schema di carico 1

ik LIk
| | e

VELLELTEV RV VT

|« D g ik ¢ Tandem Systern, Qik

Gigigik : UCL Systemn, gik

Dynamic amplification factor included

oK Cancel Apply

Tandem System UDL System
Location Adjustment | Axle Loads | Adjustment | Uniformly Dist.
Factor (kM) Factor Loads (kMN/m"2)
Lane Number1 1 300 1 9
Lane Number2 1 200 1 25
Lane Number3 1 100 1 25
Other Lanes &
Remaining Area C C 1 25
Psi factor for Tandem System
Psi factor for UDL System

Figure 94 — Vehicular load.
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7.1.2. Shear resistance - ULS

For ultimate limit state of shear resistance, the following condition must be verified:

Vra 2 Via
where:
Vra shear resistance;
Vea design shear force.

Shear resistance is calculated considering dimensions of the structural element (see
previous figures), characteristics of materials (concrete C50/60 for girder, C32/40 for
structural slab and concrete casting, and steel B450C), and a transverse reinforcement of
¢ 16 / 15 cm (considering 4 legs every 15 cm):

Via = 3969 kN

Stirrup 1

2010 Pos.B 2010 Pos.B

Stirrup 2 Stirrup 2

2010Pos.A f—2010 Pos.A

2010 Pos.B

2610PosA
1010 PosB Stirrup 3

Stirrup 4

6010Pos.A
5010 Pos.B

Figure 115 - Section 1: final section of girder near abutment (detail).
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